Published on

Essential Discrete Mathematics Symbols Reference

Authors
  • avatar
    Name
    Loi Tran
    Twitter

Basic Set Symbols

SymbolNameMeaningExample
{ }Set bracesDefines a set{1, 2, 3}
Element ofIs an element of2 ∈ {1,2,3}
Not element ofIs not an element of4 ∉ {1,2,3}
=EqualityTwo sets are equal{1,2} = {2,1}
Not equalSets are not equal{1} ≠ {1,2}

Subsets & Supersets

SymbolNameMeaningExample
Subset (or equal)Every element of A is in B{1} ⊆ {1,2}
Proper subsetSubset but not equal{1} ⊂ {1,2}
SupersetContains another set{1,2} ⊇ {1}
Proper supersetSuperset but not equal{1,2} ⊃ {1}

Set Operations

SymbolNameMeaningExample
UnionElements in A or B{1,2} ∪ {2,3} = {1,2,3}
IntersectionElements in both A and B{1,2} ∩ {2,3} = {2}
\Set differenceElements in A not in B{1,2,3} \ {2} = {1,3}
ΔSymmetric differenceIn A or B but not both{1,2} Δ {2,3} = {1,3}
Empty setSet with no elements∅ ⊆ A

Universal & Complement

SymbolNameMeaningExample
UUniversal setAll possible elementsA ⊆ U
Aᶜ or ¬AComplementElements not in AAᶜ = U \ A

Set Size & Construction

SymbolNameMeaningExample
|A|CardinalityNumber of elements in A{1,2,3} ⇒ A = 3
{ x | P(x) }Set-builder notationAll x satisfying property P(x){ x | x > 0 } = {1,2,3,...}
℘(A)Power setThe set of all subsets of A℘({1}) = {∅, {1}}

Logic Symbols (Used with Sets)

SymbolNameMeaningExample
For allUniversal quantifier∀x ∈ A
There existsExistential quantifier∃x ∈ A
AndLogical ANDx ∈ A ∧ x ∈ B
OrLogical ORx ∈ A ∨ x ∈ B
¬NotLogical negation¬(x ∈ A)
ImpliesLogical implicationx ∈ A ⇒ x ∈ B
If and only ifLogical equivalenceA ⊆ B ⇔ ∀x (x∈A ⇒ x∈B)

Common Number Sets

SymbolName
Natural numbers
Integers
Rational numbers
Real numbers
Complex numbers

Core Set Theory & Logic Symbols

SymbolNamePlain-English MeaningExample
Element ofAn object belongs to a set3 ∈ {1,2,3}
Not element ofAn object does not belong to a set4 ∉ {1,2,3}
Subset (or equal)Every element of A is also in B{1,2} ⊆ {1,2,3}
UnionElements in A or B (or both){1,2} ∪ {2,3} = {1,2,3}
IntersectionElements in both A and B{1,2} ∩ {2,3} = {2}
\Set differenceElements in A but not in B{1,2,3} \ {2} = {1,3}
Empty setSet with no elements∅ ⊆ A
|A|CardinalityNumber of elements in A|{1,2,3}| = 3
For allStatement applies to every element∀x ∈ A, x > 0
There existsAt least one element satisfies∃x ∈ A, x = 0
ImpliesIf left is true, right must be truex ∈ A ⇒ x ∈ B